Advanced diagnostic materials, such as aptamers, are required due to the scarcity of efficient diagnostic antibodies and the low sensitivity of rapid diagnostic kits at detecting the malaria parasite, Plasmodium falciparum. MethodsTwo peptides M2.9 [(KPTAEQTESPELQSAPEN) and M2.17 (KILFNVYSPLGCTCECWV)] were designed using simple epitope prediction tools and modified against the merozoite surface antigen 2 of P. falciparum (Pf.MSP2) by 3-dimensional modeling based on binding affinity. Based on five prediction tools for hydropathy, M2.17 was selected as an appropriate capture peptide. A peptide-based fluorescence-linked immunosorbent assay (FLISA) and a peptide pair-based fluorescent immunochromatographic test strip (FICT) were developed to detect P. falciparum 3D7 (drug-sensitive) and P. falciparum K1 (multi drugs-resistant) strains. ResultsBioinformatic analysis of two peptides demonstrated the potential binding affinity with the merozoite surface protein 2 of P. falciparum (Pf.MSP2) with a positive hydropathy value. The limit of detection (LOD) of FLISA was 10 parasites/μL and of a peptide pair-linked rapid FICT system was 5 and 200 parasites/μL for P. falciparum 3D7 and K1, respectively. Compared to commercial rapid detection systems (RDTs), a peptide pair-linked FICT system exhibited a 20-fold greater efficiency in detecting P. falciparum 3D7 and specifically discriminated another protozoan spp. ConclusionA peptide pair-linked rapid diagnostic strip could be an alternative to conventional RDTs for monitoring wild-type and drug-resistant malaria parasites.
Read full abstract