Abstract Engineering rock containing flaws or defects under a large water source is frequently subject to the couple influence of constant crack water pressure and geostress. To investigate the fracture behavior of precracked rock under hydromechanical coupling with constant crack water pressure, compression tests were conducted on red sandstone specimens containing a single crack of different angles using a device to realize the constant crack water pressure during loading, and the failure process of rock specimens was monitored by acoustic emission (AE) technique. The results show that the presence of constant crack water pressure has a significant promotion effect on the development of shear wing cracks, and the promotion effect is influenced by the prefabricated crack angle and water pressure. As the constant crack water pressure increases, the failure mode of the 0° precrack specimen changes from “X”- shear failure to the single oblique shear failure along the shear wing crack direction, the main failure crack of the inclined precracked specimens (precrack angles of 15°, 45°, and 60°) changes from a small acute angle with the prefabricated crack to a direction along the shear wing crack, and irregular cracks occur at the chipped prefabricated crack in the 90° precracked specimen. With an increase in the constant crack water pressure, the average energy for a single hit, cumulative AE energy, and cumulative AE hits decrease, and the proportion of the tensile cracks increases and that of the shear cracks decreases.
Read full abstract