Many pattern recognition receptors in mammalian cells initiate signaling processes that culminate in mounting an innate protective response mediated by induced synthesis of a large number of proteins including type I interferons and other cytokines. Many of these receptors are not located on the plasma membrane but on the membranes of intracellular organelles such as endosomes, mitochondria, and the endoplasmic reticulum; they primarily recognize microbial or cellular nucleic acids. In the course of biochemical analyses of the signaling pathways triggered by these receptors, we discovered that they require tyrosine phosphorylation by the protein kinase activity of the epidermal growth factor receptor (EGFR), which is located not only on the plasma membrane but also on the intracellular membranes. Here, we discuss how specific members of this family of receptors, such as TLR3, TLR9, or STING, interact with EGFR and other protein tyrosine kinases and what are the functional consequences of their post-translational modifications. The article highlights an unexpected functional link between a growth factor receptor and cellular innate immune response.
Read full abstract