In recent years, various kinds of carbon dioxide capture, utilization and storage supply chain network design (CCUS SCND) problems have been extensively studied by scholars from the supply chain management community and other fields. The existing works mainly focus on the various deterministic or uncertainty problems; few works consider the CCUS SCND resilience problem in the context of utilization/storage facility disruptions due to unexpected natural disasters or other geological anomaly events. This paper aims to study the CCUS SCND resilience problem under utilization/storage facility capacity disruption risk. We propose a stochastic mixed-integer linear programming model for the considered problem. In the considered problem, the main decisions related to the following areas are taken into account: supply chain design and planning; facility disruption risk handling, including the optimal determination of facility locations and the matching of carbon dioxide emission sources and utilization/storage facilities; carbon dioxide normal transportation planning; and transshipment planning for various disruption scenarios. Finally, an experimental study comprising a case study from China is conducted to validate the effectiveness and performance of our proposed model. The obtained results show that the supply chain networks for the case study obtained by our proposed model are efficient, cost-effective and resilient in mitigating various kinds of utilization/storage facility disruption scenarios, showing the model can be applied to large-scale CCUS projects to help managers effectively deal with disruption risks. Future research should consider multiple disruption events and propose multiple effective resilience strategies.