In this study, carbon dots (CDs)-encapsulated luminescent metal–organic frameworks@surface molecularly imprinted polymer (CDs@MOF@SMIP) was facilely prepared and applied as fluorescent probe for specific identification and sensitive detection of chloramphenicol (CAP) in food. Fluorescent CDs, serving as signal tags, were encapsulated within metal–organic backbones (ZIF-8), yielding luminescent MOF materials (CDs@ZIF-8). The synthesized CDs, CDs@ZIF-8 and CDs@ZIF-8@SMIP were investigated by morphological and structural characterizations (UV–Vis, XRD, FT-IR, BET, TEM). The CDs@ZIF-8@SMIP probe was demonstrated to have remarkable selectivity and sensitivity towards CAP. Its fluorescence decreased linearly with CAP concentration from 0.323 μg L-1 (0.001 μM) to 8075.0 μg L-1 (25.0 μM), featuring a low detection limit of 0.08 μg L-1. The CDs@ZIF-8@SMIP-based fluorescence strategy achieved satisfactory recoveries (95.5 % − 101.0 %) in CAP-spiked commercial foods with RSD < 4.4 % (n = 3). These results indicate that this method can effectively detect trace CAP in food matrices and has broad application prospects.
Read full abstract