Face detection is challenging in unconstrained environments, where it encounters various challenges such as orientation, pose, and occlusion. Deep convolutional neural networks, particularly cascaded ones, have greatly improved detection performance but still struggle with rotating objects due to limitations in the Cartesian coordinate system. Although data augmentation can mitigate this issue, it also increases computational demands. This paper introduces the Robust Polar Transformation Network (RP-Net) for rotation-invariant face detection. RP-Net converts the complex rotational problem into a simpler translational one to enhance feature extraction and computational efficiency. Additionally, the Advanced Spatial-Channel Restoration (ASCR) module optimizes facial landmark detection within polar domains and restores critical details lost during transformation. Experimental results on benchmark datasets show that RP-Net significantly improves rotation invariance over traditional CNNs and surpasses several state-of-the-art rotation-invariant face detection methods.