Polymerization of functional organics into covalently cross-linked nanostructures via bottom-up approach on solid surfaces has attracted tremendous interest recently, due to its appealing potentials in fabricating novel and artificial low dimensional nanomaterials. While there are various synthetic approaches being proposed and explored, this paper reviews the recent progress of on-surface coupling strategies towards the synthesis of low dimensional nanostructures ranging from 1D nanowire to 2D network and describes their advantages and drawbacks during on-surface process and phase transformations, for example, from molecular self-assembly to on-surface polymerization. Specifically, Ullmann reaction is discussed in detail and the mechanism governing nanostructures’ transforming effect by surface treatment is exploited. In the end, it is summarized that the hierarchical polymerization combined with Ullmann coupling makes it possible to realize the selection of different synthetic pathways and phase transformations and obtain novel organometallic nanowire with metalorganic bonding.