The shape memory cyclic behavior and mechanical durability of the shape memory polymer (SMP) and three woven fabrics (plain, twill, and satin weaves) reinforced shape memory polymer composite (WFR-SMPCs) are characterized to investigate the effect of woven textures on the mechanical and shape memory properties of WFR-SMPCs. Shape memory cycle test, shape memory durability test, and microscopic observation for SMP and WFR-SMPCs were carried out. Experimental results show that the SMP is temperature-sensitive, and higher temperature facilitates the shape memory performance of the material. The woven fabric reinforcements can significantly enhance the mechanical properties of the SMP matrix while still maintaining good shape recovery ratios above 98 % and shape fixation ratios above 90 % even though there is a slight decrease in these values. The twill WFR-SMPC displays the best mechanical performance. The satin WFR-SMPC has the highest shape recovery ratio. The twill WFR-SMPC performs the best in load-bearing capacity and recovery stress. The microscopic observations show that the rotational misalignment and bending of the fiber tows, and damage to the matrix are the main failure modes of the WFR-SMPCs at high shear strain.