We investigate the anti-plane shear problem of a curvilinear crack lying along the interface of an arbitrarily shaped elastic inhomogeneity embedded in an infinite matrix subjected to uniform stresses at infinity. Complex variable and conformal mapping techniques are used to derive an analytical solution in series form. The problem is first reduced to a non-homogeneous Riemann–Hilbert problem, the solution of which can be obtained by evaluating the associated Cauchy integral. A set of linear algebraic equations is obtained from the compatibility condition imposed on the resulting analytic function defined in the inhomogeneity and its Faber series expansion. Each of the unknown coefficients in the corresponding analytic functions can then be uniquely determined by solving the linear algebraic equations, which are written concisely in matrix form. The resulting analytical solution is then used to quantify the displacement jump across the debonded section of the interface as well as the traction distribution along the bonded section of the interface. In addition, our solution allows us to obtain mode-III stress intensity factors at the two crack tips. The solution to the anti-plane problem of a partially debonded elliptical inhomogeneity containing a confocal crack is also derived using a similar method.