Tungsten (W) is a promising candidate material for the plasma facing components in fusion reactors. However, it has issues regarding the intrinsic brittleness. Tungsten fiber reinforced tungsten composites (Wf/W) have been developed based on the concept of extrinsic toughening mechanisms and they show a pseudo-ductile behavior during the fracture process. In the present work, continuous fiber reinforced Wf/Y2O3/W composites were fabricated via a powder metallurgy (PM) process, and the microstructure and mechanical properties were characterized. The fracture behavior and toughening mechanisms were analyzed in detail combining the results of experiments and numerical simulation. The Wf/Y2O3/W composites is toughened by multiple mechanisms such as fiber bridging, crack bending and deflection, interface de-bonding and plastic deformation of fiber. The energy dissipation by interface de-bonding can be neglected. However, it is a necessary factor to ensure any extrinsic toughening mechanisms. The main contribution of the energy dissipation while composite failure is the plastic deformation of fibers.
Read full abstract