Genes of the major histocompatibility complex (MHC) are crucial for adaptive immunity in jawed vertebrates, and theory predicts that there should be mate choice for optimizing MHC constitution in the offspring. In a previous study, we demonstrated a non-random female choice of extra-pair males in the bluethroat (Luscinia svecica), yielding offspring that was closer to an intermediate MHC class II (MHCII) allele count than their within-pair halfsiblings. The present study tests whether social pairs with only within-pair young (WPY) in their brood, in the same study population, had a combined MHC-constitution closer to a presumed intermediate optimum, than social pairs with extra-pair young (EPY), with a corresponding pattern in their offspring. As expected, we found that WPY from pure WPY-broods were more MHC-optimal than WPY from mixed broods, but only in broods of young (second year) males. Correspondingly, there was a tendency for social pairs with only WPY in their brood to be more MHC-compatible than social pairs with EPY in their brood, when the male was young. Older bluethroat males have considerably larger testes than young males, and their higher sperm competitiveness could help them secure paternity in their own brood, also when they are not MHC-compatible. In other words, in the sexual conflict over paternity, females may be more likely to realise their preference for a MHC-compatible mate when paired to a young male. As a possible fitness indicator, immune responsiveness to an injected antigen (PHA) was elevated for offspring closer to “the golden mean” in MHCII allele count.Significance statementThis study contributes to our understanding of MHC-based mate choice in extra-pair mating systems, by showing that female bluethroats (Luscinia svecica) with an MHCII-compatible social mate tend to have no extra-pair young in their brood, but only when the social male is young. This elucidates a possible sexual conflict, in which older social males are able to override female preferences and prevent other males from gaining paternity in their brood through higher sperm production. Studying systems in which extra-pair paternity occurs offers an insight into the genetic benefits of mate choice, as extra-pair males, in contrast to social males, generally contribute only sperm. Further, the strict and thorough genotyping scheme applied in this study enabled us to demonstrate a preference for “the golden mean” in MHC-diversity in a species with one of the highest MHC class II-diversity known to date.