Clinical decisions are crucial because they are related to human lives. Thus, managers and decision makers in the clinical environment seek new solutions that can support their decisions. A clinical data warehouse (CDW) is an important solution that is used to achieve clinical stakeholders’ goals by merging heterogeneous data sources in a central repository and using this repository to find answers related to the strategic clinical domain, thereby supporting clinical decisions. CDW implementation faces numerous obstacles, starting with the data sources and ending with the tools that view the clinical information. This paper presents a systematic overview of purpose of CDWs as well as the characteristics; requirements; data sources; extract, transform and load (ETL) process; security and privacy concerns; design approach; architecture; and challenges and difficulties related to implementing a successful CDW. PubMed and Google Scholar are used to find papers related to CDW. Among the total of 784 papers, only 42 are included in the literature review. These papers are classified based on five perspectives, namely methodology, data, system, ETL tool and purpose, to find insights related to aspects of CDW. This review can contribute answers to questions related to CDW and provide recommendations for implementing a successful CDW.
Read full abstract