IntroductionA broad range of pathophysiologic conditions can lead to cardiopulmonary arrest in children. Some of these children suffer from refractory cardiac arrest, not responding to basic and advanced life support. Extracorporeal-Cardiopulmonary Resuscitation (E-CPR) might be a life-saving option for this group. Currently this therapy is only performed in-hospital, often necessitating long transport times, thereby negatively impacting eligibility and chances of survival. We present the first two cases of prehospital E-CPR in children performed by regular Helicopter Emergency Medical Services (HEMS).Case presentationsThe first patient was a previously healthy 7 year old boy who was feeling unwell for a couple of days due to influenza. His course deteriorated into a witnessed collapse. Direct bystander CPR and subsequent ambulance advanced life support was unsuccessful in establishing a perfusing rhythm. While doing chest compressions, the patient was seen moving both his arms and making spontaneous breathing efforts. Echocardiography however revealed a severe left ventricular impairment (near standstill). The second patient was a 15 year old girl, known with bronchial asthma and poor medication compliance. She suffered yet another asthmatic attack, so severe that she progressed into cardiac arrest in front of the attending ambulance and HEMS crews. Despite maximum bronchodilator therapy, intubation and the exclusion of tension pneumothoraxes and dynamic hyperinflation, no cardiac output was achieved.InterventionAfter consultation with the nearest paediatric E-CPR facilities, both patients were on-scene cannulated by regular HEMS. The femoral artery and vein were cannulated (15-17Fr and 21Fr respectively) under direct ultrasound guidance using an out-of-plane Seldinger approach. Extracorporeal Life Support flow of 2.1 and 3.8 l/min was established in 20 and 16 min respectively (including preparation and cannulation). Both patients were transported uneventfully to the nearest paediatric intensive care with spontaneous breathing efforts and reactive pupils during transport.ConclusionThis case-series shows that a properly trained regular HEMS crew of only two health care professionals (doctor and flight nurse) can establish E-CPR on-scene in (older) children. Ambulance transport with ongoing CPR is challenging, even more so in children since transportation times tend to be longer compared to adults and automatic chest compression devices are often unsuitable and/or unapproved for children. Prehospital cannulation of susceptible E-CPR candidates has the potential to reduce low-flow time and offer E-CPR therapy to a wider group of children suffering refractory cardiac arrest.
Read full abstract