BackgroundSynovial fluid mesenchymal stem cells (SF-MSCs) originate in the synovium and contribute to the endogenous repair of damaged intra-articular tissues. Here, we clarified the relationship between their numbers and joint structural changes during osteoarthritis (OA) progression and investigated whether SF-MSCs had phenotypes favorable for tissue repair, even in an OA environment.MethodsPartial medial meniscectomy (pMx) and sham surgery were performed on both knees of rats. SF and knee joints were collected from intact rats and from rats at 2, 4, and 6 weeks after surgery. SF was cultured for 1 week to calculate the numbers of colony-forming cells and colony areas. Joint structural changes were evaluated histologically to investigate their correlation with the numbers and areas of colonies. RNA sequencing was performed for SF-MSCs from intact knees and knees 4 weeks after the pMx and sham surgery.ResultsColony-forming cell numbers and colony areas were greater in the pMx group than in the intact and sham groups and peaked at 2 and 4 weeks, respectively. Synovitis scores showed the strongest correlation with colony numbers (R = 0.583) and areas (R = 0.456). RNA sequencing revealed higher expression of genes related to extracellular matrix binding, TGF-β signaling, and superoxide dismutase activity in SF-MSCs in the pMx group than in the sham group.ConclusionThe number of SF-MSCs was most closely correlated with the severity of synovitis in this rat OA model. Tissue-reparative gene expression patterns were observed in SF-MSCs from OA knees, but not from knees without intra-articular tissue damage.
Read full abstract