Integrin-mediated activation of the pro-fibrotic mediator transforming growth factor-β1 (TGF-β1), plays a critical role in idiopathic pulmonary fibrosis (IPF) pathogenesis. Galectin-3 is believed to contribute to the pathological wound healing seen in IPF, although its mechanism of action is not precisely defined. We hypothesised that galectin-3 potentiates TGF-β1 activation and/or signaling in the lung to promote fibrogenesis. We show that galectin-3 induces TGF-β1 activation in human lung fibroblasts (HLFs) and specifically that extracellular galectin-3 promotes oleoyl-L-α-lysophosphatidic acid sodium salt (LPA)-induced integrin-mediated TGF-β1 activation. Surface plasmon resonance (SPR) analysis confirmed that galectin-3 binds to αv integrins, αvβ1, αvβ5 and αvβ6 and to the TGFβRII subunit in a glycosylation-dependent manner. This binding is heterogeneous and not a 1:1 binding stoichiometry. Binding interactions were blocked by small molecule inhibitors of galectin-3 which target the carbohydrate recognition domain. Galectin-3 binding to β1 integrin was validated in vitro by co-immunoprecipitation in HLFs. Proximity ligation assays indicated galectin-3 and β1 integrin colocalize closely (≤40 nm) on the cell surface, that colocalization is increased by TGF-β1 treatment and blocked by galectin-3 inhibitors. In the absence of TGF-β1 stimulation, colocalization was detectable only in HLFs from IPF patients suggesting the proteins are inherently more closely associated in the disease state. Galectin-3 inhibitor treatment of precision cut lung slices from IPF patients reduced Col1a1, TIMP1 and HA secretion to a similar degree as TGF-β type I receptor inhibitor. These data suggest galectin-3 promotes TGF-β1 signaling and may induce fibrogenesis by interacting directly with components of the TGF-β1 signaling cascade.