Cumulus oophorus complexes (COCs) are the first extracellular barriers that sperm must pass through to fuse with oocytes, which have an important role in oocyte maturation and fertilization. However, little is known about the molecular mechanisms of COCs involved in fertilization. In this study, COCs were collected and then randomly divided into a test group that interacted with sperm and a control group that did not interact with sperm. Then, the total RNA was extracted; RNA transcriptome and small RNA libraries were prepared, sequenced, and analyzed. The results showed that 1283 differentially expressed genes (DEGs), including 560 upregulated and 723 downregulated genes. In addition, 57 differentially expressed miRNAs (DEMIs) with 35 upregulated and 22 downregulated were also detected. After the RNA-seq results were verified by RT-qPCR, 86 effective DEGs and 40 DEMIs were finally screened and a DEMI-DEG regulatory network was constructed. From this, the top ten hub target genes were HNF4A, SPN, WSCD1, TMEM239, SLC2A4, E2F2, SIAH3, ADORA3, PIK3R2, and GDNF, and they were all downregulated. The top ten hub DEMIs were miR-6876-5p, miR-877-3p, miR-6818-5p, miR-4690-3p, miR-6789-3p, miR-6837-5p, miR-6861-5p, miR-4421, miR-6501-5p, and miR-6875-3p, all of which were upregulated. The KEGG signaling pathway enrichment analysis showed that the effective DEGs were significantly enriched in the calcium, AMPK, and phospholipase D signaling pathways. Our study identified several DEGs and DEMIs and potential miRNA-mRNA regulatory pathways in COCs and these may contribute to fertilization. This study may provide novel insights into potential biomarkers for fertilization failure.
Read full abstract