Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations were performed to understand the effect of the external electric field (EEF) on the reorganization (λ) and the lowest triplet excited-state (T1) energies of high T1 blue host materials. Depending on the direction and the strength of the external electric field (EEF), the positive and negative changes of hole and electron λ(h and λ e) values were found in these materials. More importantly, λ e seems to be more sensitive than λ h values under the EEF. It is also noticed that the calculated T1 energies are meaningfully changed in the application of EEFx and EEFy. In contrast, the effect of EEFz on the T1 energies can be negligible. From the results of theoretical investigation, the obvious evidence related to the influence of EEF on the charge transport and excited-state properties of high T1 blue host materials were obtained. In the present work, we expect that our theoretical study will provide new insight into understanding the influence of EEF as a key player in manipulating essential properties of the high T1 blue host material during the electrical operation.