IntroductionThe aim of this study was to leverage label-efficient self-supervised learning (SSL) to train a model that can detect ECR and differentiate it from caries. MethodsPeriapical (PA) radiographs of teeth with ECR defects were collected. Two board-certified endodontists reviewed PA radiographs and cone beam computed tomographic (CBCT) images independently to determine presence of ECR (ground truth). Radiographic data were divided into 3 regions of interest (ROIs): healthy teeth, teeth with ECR, and teeth with caries. Nine contrastive SSL models (SimCLR v2, MoCo v2, BYOL, DINO, NNCLR, SwAV, MSN, Barlow Twins, and SimSiam) were implemented in the assessment alongside 7 baseline deep learning models (ResNet-18, ResNet-50, VGG16, DenseNet, MobileNetV2, ResNeXt-50, and InceptionV3). A 10-fold cross-validation strategy and a hold-out test set were employed for model evaluation. Model performance was assessed via various metrics including classification accuracy, precision, recall, and F1-score. ResultsIncluded were 190 PA radiographs, composed of 470 ROIs. Results from 10-fold cross-validation demonstrated that most SSL models outperformed the transfer learning baseline models, with DINO achieving the highest mean accuracy (85.64 ± 4.56), significantly outperforming 13 other models (P < .05). DINO reached the highest test set (ie, 3 ROIs) accuracy (84.09%) while MoCo v2 exhibited the highest recall and F1-score (77.37% and 82.93%, respectively). ConclusionsThis study showed that AI can assist clinicians in detecting ECR and differentiating it from caries. Additionally, it introduced the application of SSL in detecting ECR, emphasizing that SSL-based models can outperform transfer learning baselines and reduce reliance on large, labeled datasets.
Read full abstract