Roots perform multifaceted functions in plants including the movement of nutrients and water, sensing stressors, shaping microbiome, and providing structural support. How roots perceive and respond above traits at the molecular level remains largely unknown. Although crop development has greatly advanced, most current efforts have concentrated on above-ground traits leaving significant knowledge gaps in root biology. Also, studying root system architecture (RSA) is more difficult due to its intricacy and the difficulties of observing them during plant life cycle. However, with the aid of high throughput phenotyping and genotyping tools many developmental and stress-mediated regulation of RSA has emerged in both model and crop plants leading to new insights in root biology. Our current understanding of upstream signaling events (cell wall, apoplast) in roots and how they are interconnected with downstream signaling cascades has largely been constrained by the fact that most research in plant systems concentrates on cytosolic signal transduction pathways while ignoring the early perception by cells' exterior parts. In this regard, we discussed the role of FERONIA (FER) a cell wall receptor-like kinase (RLK) which acts as a sensor and a bridge between apoplast and cytosolic signaling pathways in root biology. The goal of this study is to provide valuable insights into present understanding and future research perspectives on how FER regulates distinct root responses related to growth and adaptation. In plants, FER is a unique RLK because it can act as a multitasking sensor regulate diverse growth, and adaptive traits. In this review, we mainly highlighted its role in root biology like how it modulates distinct root responses such as root development, sensing abiotic stressors, mechanical stimuli, nutrient transport, and shaping microbiome. Further, we provided an update on how FER controls root traits by involving RALF peptides, calcium, ROS and hormones. We also highlight number of outstanding questions in FER mediated root responses that warrant future investigation. We believe that FER can provide novels insights for the development of future climate resilient and high yielding crops based on the modified root system.