Lifespan estimates for semilinear damped wave equations of the form ∂t2u-Δu+∂tu=|u|p\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\partial _t^2u-\\Delta u+\\partial _tu=|u|^p$$\\end{document} in a two dimensional exterior domain endowed with the Dirichlet boundary condition are dealt with. For the critical case of the semilinear heat equation ∂tv-Δv=v2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\partial _tv-\\Delta v=v^2$$\\end{document} with the Dirichlet boundary condition and the initial condition v(0)=εf\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$v(0)=\\varepsilon f$$\\end{document}, the corresponding lifespan can be estimated from below and above by exp(exp(Cε-1))\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\exp (\\exp (C\\varepsilon ^{-1}))$$\\end{document} with different constants C. This paper clarifies that the same estimates hold even for the critical semilinear damped wave equation in the exterior of the unit ball under the restriction of radial symmetry. To achieve this result, a new technique to control L1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$L^1$$\\end{document}-type norm and a new Gagliardo–Nirenberg type estimate with logarithmic weight are introduced.
Read full abstract