Strict quality control for mitochondrial proteins is necessary to ensure cell homeostasis. Two cellular pathways–Ubiquitin Proteasome System (UPS) and autophagy–contribute to mitochondrial homeostasis under stressful conditions. Here, we investigate changes to the mitochondria proteome and to the ubiquitin landscape at mitochondria in response to proteasome inhibition. Treatment of HeLa cells devoid of Parkin, the primary E3 ligase responsible for mitophagy, with proteasome inhibitor MG132 for a few hours caused mitochondrial oxidative stress and fragmentation, reduced energy output, and increased mitochondrial ubiquitination without inducing mitophagy. Overexpression of Parkin did not show any induction of mitophagy in response to MG132 treatment. Analysis of ubiquitin chains on isolated mitochondria revealed predominance of K48, K29 and K63-linked polyubiquitin. Interestingly, of all ubiquitinated mitochondrial proteins detected in response to MG132 treatment, a majority (≥90%) were intramitochondrial irrespective of Parkin expression. However, overall levels of these ubiquitinated mitochondrial proteins did not change significantly upon proteasome inhibition when evaluated by quantitative proteomics (LFQ and SILAC), suggesting that only a small portion are ubiquitinated under basal conditions. Another aspect of proteasome inhibition is significant enrichment of UPS, lysosomal and phagosomal components, and other heat shock proteins associated with isolated mitochondria. Taken together, our study highlights a critical role of UPS for ubiquitinating and removing imported proteins as part of a basal mitochondrial quality control system independent of Parkin. SignificanceAs centers of cellular bioenergetics, numerous metabolic pathways and signaling cascades, the health of mitochondria is of utmost importance for ensuring cell survival. Due to their unique physiology, mitochondria are constantly subjected to damaging oxidative radicals (ROS) and protein import-related stress due to buildup of unfolded aggregate-prone proteins. Thus, for quality control purposes, mitochondria are constantly under surveillance by Autophagy and the Ubiquitin Proteasome System (UPS), both of which share ubiquitin as a common signal. The ubiquitin landscape of mitochondria has been studied in detail under stressful conditions, however, little is known about basal mitochondrial ubiquitination. Our study reveals that the extent of ubiquitination at mitochondria greatly increases upon proteasome inhibition, pointing to a large number of potential substrates for proteasomal degradation. Interestingly, most of the ubiquitination occurs on intramitochondrial proteins, components of the electron transport chain (ETC) and matrix-resident metabolic enzymes in particular. Moreover, numerous cytosolic UPS components, chaperones and autophagy-lysosomal proteins were recruited to mitochondria upon proteasome inhibition. Taken together, this suggests that the levels and functions of mitochondrial proteins are constantly regulated through ubiquitin-dependent proteasomal degradation even under basal conditions. Unclogging mitochondrial import channels may provide a mechanism to alleviate stress associated with mitochondrial protein import or to adapt cells according to their metabolic needs. Therefore, targeting the mitochondrial ubiquitination/deubiquitination machinery, such as improving the therapeutic potency of proteasome inhibitors, may provide an additional therapeutic arsenal against tumors.
Read full abstract