Leaching of dissolved organic nitrogen (DON) is a significant pathway for nitrogen (N) loss in agricultural ecosystems. The excessive application of N for enhanceing agricultural productivity often results in the leaching of N into groundwater. Yet not well understood, the extent of retention in the vadose zone has critical implications for risk management and remediation strategies. This study aims to advance simulation techniques for modelling the transport process of reactive DON within a heterogeneous vadose zone. Through a combination of laboratory experiments and numerical simulations, the study firstly examines the extent of DON retention in the vadose zone and quantitatively analyse groundwater contamination risk from this kind of accumulation. Our findings indicate that heavy N fertilizer application and high-intensity rainfall events led to elevated contents of DON in the vadose zone and increased DON leaching fluxes into groundwater. Besides, intensifier rainfall reduced the N storage more quickly in scenarios devoid of DON application with higher mineralization rate, while DON slowly mineralized to other forms, largely accumulated in the top layer and migrated deeper with intensifier rainfall after input of urea. In our scenarios, DON accounted for a substantial portion (33–68%) of the total dissolved nitrogen (TDN) leaching fluxes, with exogenous DON content contributing significantly (25–85%) to the overall DON leaching into the aquifer. These results underscore the need for effective strategies to mitigate groundwater contamination risks associated with agricultural N use.
Read full abstract