Abstract Background: The National Cancer Institute (NCI) has developed a Patient-Derived Models Repository (PDMR; https://pdmr.cancer.gov) of preclinical models including patient-derived xenografts (PDX), organoids (PDOrg) and patient-derived cell cultures (PDC). Extensive clinical annotation and genomic datasets are available for these preclinical models. However, it is unclear if the molecular profiles of the corresponding patient tumors are stably propagated in these models. We have previously demonstrated that PDX models from the NCI PDMR faithfully represent the patient tumors both in terms of genomic stability and tumor heterogeneity. Here, we conduct an in-depth investigation of genomic representation of patient tumors in the PDOrgs and PDCs. Methods: PDOrgs (n=64) and PDCs (n=94) were established from tumor fragments (i.e., initiator specimens) obtained either from patient specimens or from PDX specimens of early passage. For some models (n=19), both PDOrgs and PDCs were generated from the same tumor tissue; in fewer cases (n=4), PDCs were established from organoids derived from patient specimens. Whole Exome Sequencing and RNA-Seq were performed on all PDCs and PDOrgs, and data were compared with patient specimens or early passage PDXs. Results: A majority of the PDOrgs and PDCs have stably inherited the genome of the corresponding patient specimens based on the following observations: (1) >87% of PDOrgs and PDCs maintained similar copy number alteration profiles compared with the initiator specimens of the preclinical model; (2) the variant allele frequency (VAF) of clinically relevant mutations remained consistent between the PDOrgs, PDCs, and the initiator specimens, with none of the PDCs or PDOrgs deviating by >15% VAF; and (3) clinically relevant biomarkers (e.g., MSI, LOH, mutational signatures etc.) are concordant amongst the PDOrgs, PDCs, and the initiator specimens. We observed that the majority of SNVs and indels present in the initiator specimens were also found in the PDOrgs and PDCs, suggesting almost all the tumor heterogeneity was preserved in these preclinical models. Conclusions: This large and histologically diverse set of PDOrgs and PDCs from the NCI PDMR exhibited genomic stability and faithfully represented the tumor heterogeneity observed in corresponding patient specimens. These preclinical models thus represent a valuable resource for researchers interested in pre-clinical drug or other studies. Citation Format: Biswajit Das, Yvonne A. Evrard, Li Chen, Rajesh Patidar, Tomas Vilimas, Justine N. McCutcheon, Amanda L. Peach, Nikitha V. Nair, Thomas D. Forbes, Brandie A. Fullmer, Anna J. Lee Fong, Luis E. Romero, Alyssa K. Chapman, Kelsey A. Conley, Robin D. Harrington, Shahanawaz S. Jiwani, Peng Wang, Michelle M. Gottholm-Ahalt, Erin N. Cantu, Gloryvee Rivera, Lindsay M. Dutko, Kelly M. Benauer, Vishnuprabha R. Kannan, Carrie A. Bonomi, Kelly M. Dougherty, Joseph P. Geraghty, Marion V. Gibson, Savanna S. Styers, Abigail J. Walke, Jenna E. Moyer, Anna Wade, Mariah L. Baldwin, Kaitlyn A. Arthur, Kevin J. Plater, Luke Stockwin, Matthew R. Murphy, Michael E. Mullendore, Dianne L. Newton, Melinda G. Hollingshead, Chris A. Karlovich, Paul M. Williams, James H. Doroshow. Patient-derived organoid and cell culture models from the NCI Patient-Derived Models Repository (NCI PDMR) preserve genomic stability and heterogeneity of patient tumor specimens [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 3916.