The local bonding environment of chlorine in silicate melts has a profound influence over the thermodynamic properties and structure of a melt, affecting the viscosity, rheology, and volatile degassing potential. To constrain the bonding environment of Cl in natural silicate melts, we have determined Cl K-edge X-ray absorption fine structure (XAFS) spectra for 44 experimentally produced silicate glasses in both the X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) regions. In the pre-edge region, the presence of a pre-edge peak indicates covalent bonding of chlorine with silicon. Addition of divalent cations suppresses this pre-edge feature, and its centroid shifts to higher energy, indicating a change to increasingly more ionic bonding. In the XANES region the main absorption edge energy, E0, and the energy of maximum intensity, EMax, are also compositionally dependent. SiO2- rich glasses have relatively low values of E0 and EMax while the addition of 2+ ions increases both to values close to those found in the end-member chlorides CaCl2, MgCl2, and FeCl2. In two Na-rich glasses, E0 and EMax are close to corresponding energies in NaCl. It appears, therefore that bonding in the glasses is closely related to that found in the simple chlorides. This may be due to clustering which generates CaCl, MgCl, FeCl and NaCl linkages either in the melts themselves or in the glasses due to rearrangements during quenching.The EXAFS parts of the glass spectra confirm the conclusions derived from the XANES region. These show that, as expected from the XANES region, addition of Ca and Fe2+ leads to R-space peaks which are closely related to those found in anhydrous CaCl2 and FeCl2 respectively.In order to determine if the spectra depend on pressure, temperature or chlorine fugacity of synthesis, 9 experiments were conducted using a single starting composition (Fe-free haplobasalt, An50Di28Fo22) across a range of temperatures (1300–1400 °C), pressures (5–20 kbar), chlorine fugacities (f(Cl2)) (1.38E−03 to 1.66E−06), and water contents (expected 0–8 wt% H2O). The results show that there is almost no change in the spectra across the XANES and EXAFS regions, indicating either that chlorine bonding is independent of the intensive parameters of the experiment or that all melts quench to glasses with the same local structure around the Cl atoms.
Read full abstract