Extended teleparallel gravity, characterized by function F(Q), where Q is the non-metricity scalar, is one of the most promising approaches to general relativity. In this paper, we reexamine a specific dynamical dark energy model, which is indistinguishable from the Λ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Lambda $$\\end{document}CDM model at the present time and exhibits a special event in the future, within F(Q) gravity. To constrain the free parameters of the model, we perform Markov chain Monte Carlo (MCMC) analysis, using the last data from Pantheon+\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\hbox {Pantheon}^{+}$$\\end{document} and the latest measurements of the H(z) parameter, combined. On the basis of this analysis, we find that our dynamical dark energy model, in the context of F(Q) gravity, lies in the quintessence regime rather than in the phantom regime, as in the case of general relativity. Furthermore, this behavior affects the future expansion of the Universe, as it becomes decelerating at a 1σ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$1\\sigma $$\\end{document} confidence level for z<-0.5\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$z<-0.5$$\\end{document}, showing a bounce at zB≈-0.835\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$z_{\ ext {B}}\\approx -0.835$$\\end{document}. We support our conclusion with a cosmographic analysis.