Classical Goppa codes are a special case of Alternant codes. First we prove that the parity-check subcodes of Goppa codes and the extended Goppa codes are both Alternant codes. Before this paper, all known cyclic Goppa codes were some particular BCH codes. Many families of Goppa codes with a cyclic extension have been found. All these cyclic codes are in fact Alternant codes associated to a cyclic Generalized Reed–Solomon code. In (1989, J. Combin. Theory Ser. A 51, 205–220) H. Stichtenoth determined all cyclic extended Goppa codes with this property. In a recent paper (T. P. Berger, 1999, in “Finite Fields: Theory, Applications and Algorithms (R. Mullin and G. Mullen, Eds.), pp. 143–154, Amer. Math. Soc., Providence), we used some semi-linear transformations on GRS codes to construct cyclic Alternant codes that are not associated to cyclic GRS codes. In this paper, we use these results to construct cyclic Goppa codes that are not BCH codes, new families of Goppa codes with a cyclic extension, and some families of non-cyclic Goppa codes with a cyclic parity-check subcode.