The molecular action of SOX9 can promote lipogenesis. Because the hamster Harderian gland (HG) synthesizes lipids and exhibits sexual dimorphism, this study aimed to identify and characterize Harderian SOX9. We examined the tissue distribution and expression profiles of SOX9 in hamster Mesocricetus auratus HGs. The full-length SOX9 cDNA sequence [3649-base pairs (bp)] contains an 81-bp 5′ untranslated region (UTR), a 3′ UTR of 2044-bp, an open reading frame (ORF) of 1524-bp, and a polyadenylation signal (AATAAA) at 19-bp upstream of poly(A) tail. The cDNA encodes a 507 amino acid protein containing the potential DNA-binding domain known as the HMG box. BLAST analysis revealed 99%, 99%, and 97% identity with the SOX9 of mouse, rat, and human, respectively. High expression levels were also observed in the testis, cerebellum, and hypothalamus. qPCR analysis demonstrated that SOX9 is expressed more abundantly in the HGs of males than in females. Sexually dimorphic expression of SOX9 suggests that differential expression between male and female HGs could be under the regulation of sex steroids. SOX9 might play a similar role in regulating exocrine secretions of lipids; these could occur downstream of FGF signaling – as found during embryogenesis – and/or androgen signaling.