In the vertebrate nervous system, neurogenesis generally precedes gliogenesis. The mechanisms driving the switch in cell type production and generation of the correct proportion of cell types remain unclear. Here, we show that Fgf20 signalling patterns progenitors to induce the switch from neurogenesis to oligodendrogenesis in the zebrafish hindbrain. Fgf20 emanating from earlier-born neurons signals at a short range to downregulate proneural gene expression in the segment centre with high spatial precision along both anterior-posterior (AP) and dorsal-ventral (DV) axes. This signal induces oligodendrocytes in the segment centre by upregulating olig2 and sox10 expression in pre-patterned competent progenitors. We show that the magnitude of proneural gene downregulation and the quantity of OPCs specified is dependent on the extent of Fgf20 signalling. Overexpression of fgf20a induces precocious specification and differentiation of oligodendrocytes among olig2+ progenitors, resulting in an increase in oligodendrocytes at the expense of neurogenesis. Thus, Fgf20 signalling defines the proportion of each cell type produced. Taken together, Fgf20 signalling from earlier-born neurons patterns hindbrain segments spatially and temporally to induce the neurogenesis-to-oligodendrogenesis switch.
Read full abstract