Mitochondrial permeability transition pore (mPTP) opening is a key hallmark of injured type II alveolar epithelial cells (AECIIs) in idiopathic pulmonary fibrosis (IPF). Inhibiting mPTP opening in AECIIs is considered a potential IPF treatment. Herein, a "double braking" strategy on mPTP by cyclosporin A (CsA) derived ionizable lipid with 3D structure (3D-lipid) binding cyclophilin D (CypD) and siRNA downregulating mitochondrial calcium uniporter (MCU) expression is proposed for treating IPF. 3D-lipid and MCU targeting siRNA (siMCU) are co-assembled to form stable 3D-LNP/siMCU nanoparticles (NPs), along with helper lipids. In vitro results demonstrated that these NPs effectively inhibit mPTP opening by 3D-lipid binding with CypD and siRNA downregulating MCU expression, thereby decreasing damage-associated molecular patterns (DAMPs) release and suppressing epithelial-to-mesenchymal transition (EMT) process in bleomycin-induced A549 cells. In vivo results revealed that 3D-LNP/siMCU NPs effectively ameliorated collagen deposition, pro-fibrotic factors secretion, and fibroblast activation in bleomycin-induced pulmonary fibrosis (PF) mouse models. Moreover, compared to the commercial MC3-based formulation, optimized Opt-MC3/siRNA NPs with incorporating 3D-lipid as the fifth component, showed superior therapeutic efficacy against PF due to their enhanced stability and higher gene silencing efficiency. Overall, the nanomedicine containing 3D-lipid and siMCU will be a promising and potential approach for IPF treatment.
Read full abstract