Abstract MGA is an incompletely studied gene with a high mutation frequency in MLL-PTD AML (9%) and in core bind factor AML (8%). This gene encodes a MAX-interacting protein and is believed to act as a transcription factor that suppresses MYC binding to its target. By in silico analysis, we found that MGA is expressed in normal myeloid hematopoietic cells and AML, and the expression level is comparable with TET2 or DNMT3A. Further data mining of TCGA revealed a high frequency of inactivating mutations of the MGA gene in a variety of cancers such as various adenocarcinomas. To interrogate functionally its role in leukemogenesis, lentiviral constructs containing either shRNA or CRISPR-sgRNA targeted to different regions of the MGA gene were generated. MGA expressing AML cell line EOL-1 was silenced by shRNA or CRISPER system. Silencing was confirmed by western blot (shRNA) and Sanger Sequencing (sgRNA). An increase of methylcellulose colony number (~30%) was observed in MGA silenced cell lines. Control EOL-1 cells or EOL-1 cells silenced with MGA CRISPR sgRNAs were injected into both flanks of NSG mice, and tumor masses were harvested 21 days after injection. Silencing of MGA by CRISPR-sgRNA consistently enhanced in vivo xenograft cell growth. In addition, western blot analyses revealed silencing of MGA in EOL-1 cells increased protein levels of Cyclin E1 and phos-RB (S807 phosphorylation inhibits the ability of RB to target protein allowing cell cycle progression), indicative of a proliferative advantage conferred by the silencing of MGA. MGA may be a potential regulator of the MYC pathway. We, therefore, examined whether silencing of MGA alters MYC transcriptional activity. Luciferase reporter assay was carried out in 293FT cells stabilized with either scramble or shRNA- targeting MGA. Luciferase activities were measured 48 h after transfection of cells with MYC activity reporter pMyc4ElbLuc and normalized to the corresponding co-transfected Renilla luciferase activity. A fourfold increase in luciferase activity was observed in MGA silenced cells when compared with non- targeting shRNA controls. Furthermore, Kaplan–Meier survival analysis was performed in the TCGA-AML patients by comparison of cases with highest versus lowest expression of MGA. P-values were calculated by log-rank test. MGA expression data and patient survival data were retrieved from TCGA-AML patients RNA seq, or microarray (70 AML patients). The MGA expression ‘high’ and ‘low’ groups were defined by 15% higher than the median or 15% lower than the median, respectively. AML patients with lower levels of MGA in their leukemic samples had a worse outcome compared with those whose leukemic cells expressed higher levels of MGA. Collectively, our results suggest that MGA may function as a potential tumor-suppressor in AML. Citation Format: Qiaoyang Sun, Lingwen Ding, Kar-Tong Tan, Wenwen Chien, Xinyi Loh, Jinfen Xiao, Anand Mayakonda, Dechen Lin, Yanyi Jiang, Henry Yang, Sigal Gery, H. Phillip Koeffler. MGA is a potential tumor suppressor in acute myeloid leukemia [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 806. doi:10.1158/1538-7445.AM2017-806
Read full abstract