BackgroundAcute lung injury (ALI) is a life-threatening condition characterized by excessive pulmonary inflammation, yet its precise pathophysiology remains elusive. Pyroptosis, a programmed cell death mechanism controlled by gasdermin D (GSDMD), has been linked to the etiology of ALI. This study investigated the regulatory functions of the transcription factor E-twenty-six variant gene 5 (ETV5) and GSDMD in ALI. MethodsLipopolysaccharide (LPS) was used to treat BEAS-2B cells (50 mmol/mL) and establish an LPS-induced mouse model of ALI (by intratracheal administration, 3 mg/kg). Protein-protein docking, immunofluorescence analysis, western blotting, real-time quantitative polymerase chain reaction, and dual-luciferase reporter gene assay were used to examine ETV5-mediated negative feedback regulation of GSDMD and its effects on pyroptosis and ALI. ResultsOur results showed that the physiological function of ETV5 was reduced by its downregulated expression, which impeded its nuclear translocation in ALI mice. Increased pyroptosis and enhanced production of inflammatory cytokines were associated with LPS-induced ALI. ETV5 overexpression in LPS-treated BEAS-2B cells decreased the expression of total and membrane-bound GSDMD, negatively regulated GSDMD, and prevented pyroptosis. The expression of inflammatory cytokines was subsequently reduced due to this inhibition, which, in turn, reduced ALI. Molecular docking analysis and dual-luciferase reporter gene assay results indicated a direct interaction between ETV5 and GSDMD, which inhibited GSDMD production. ConclusionOur results indicate that ETV5 inhibits pyroptosis, decreases the expression of inflammatory cytokines, and negatively regulates GSDMD expression to ameliorate ALI symptoms.