The periosteum plays an important role in vascularization and ossification during bone repair. However, in most studies, an artificial periosteum cannot restore both functions of the periosteum concurrently. In this study, a novel nanofiber that can sustain the release of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2) was fabricated to enhance the durability of angiogenesis and osteogenesis during bone regeneration. A cell-free tissue engineered periosteum based on an electrospinning poly-l-lactic acid (PLLA) nanofiber was fabricated, on which VEGF and BMP-2 were immobilized through a polydopamine (PDA) coating conveniently and safely (BVP@PLLA membrane). The results indicated a significantly improved loading rate as well as a slow and sustained release of VEGF and BMP-2 with the help of the PDA coating. BMP-2 immobilized on nanofibers successfully induced the osteogenic differentiation of human bone marrow mesenchymal stem cells (BMSCs) in vitro with high expression of runt-related transcription factor 2 (Runx2), osteopontin (OPN), and alkaline phosphatase (ALP). Similarly, angiogenic differentiation of BMSCs with the expression of fetal liver kinase-1 (Flk-1) and vascular endothelial cadherin (VE-cadherin) was observed under the environment of VEGF sustained release. Moreover, an in vivo study revealed that the BVP@PLLA membrane could enhance vascular formation and new bone formation, which accelerates bone regeneration in rat femoral defects along with a massive periosteum defect. Therefore, our study suggests that the novel artificial periosteum with dual growth factor controlled release is a promising system to improve bone regeneration in bone defects along with a massive periosteum defect.
Read full abstract