Cervical cancer is the fourth most common cancer in women. The risk factors for cervical cancer include human papillomavirus (HPV) infection, age, smoking, number of pregnancies, use of oral contraceptives, and diet. However, long-term HPV infection appears to be the main risk factor for developing cervical cancer. This in-silico analysis aims to identify the expression network of proteins and the miRNAs that play a role in the development of HPV-induced cervical cancer. The critical proteins and miRNAs were extracted using the DisGeNET and miRBase databases. String and Gephi were applied to the network analysis. The GTEx web tool was utilized to Identify tissue expression levels. The Enrichr website was used to explore the molecular function and pathways of found genes. Ten proteins, TP53, MYC, AKT1, TNF, IL6, EGFR, STAT3, CTNNB1, ESR1, and JUN, were identified as the most critical shared gene network among cervical cancer and HPV. Seven miRNAs were found, including hsa-mir-146a, hsa-mir-27, hsa-mir-203, hsa-mir-126, hsa-mir-145, hsa-mir-944, and hsa-mir-93, which have a common expression in cervical cancer and HPV. Overall, the gene network, including TP53, MYC, AKT1, TNF, IL6, EGFR, STAT3, CTNNB1, ESR1, and JUN, and Also, hsa-mir-145, hsa-mir-93, hsa-mir-203, and hsa-mir-126 can be regarded as a gene expression pathway in HPV-induced cervical cancer.