STAR-GARCH models are hybrid models that combine the functional form of smooth transition autoregressive models and Generalized autoregressive conditional heteroscedasticity models. The two classes of STAR models considered in this paper are Exponential and Logistic Smooth transition autoregressive models (ESTAR and LSTAR). The functional form of each of this was combined with that of GARCH model and the resulting models becomes ESTAR-GARCH and LSTAR-GARCH models. The derived equations were applied to Nigerian gross domestic product (Real estate) for empirical illustration. Statonarity tests (Unit root test Graphical and correlogrom methods) conducted revealed that the series was stationary at Second difference. The hybrid models equations so derived were used to determine the model that performed better using the information criteria (AIC, SIC and HQIC), variances obtained from the data, performance measure indices (RMSE, MAE, MAPE THEIL U, Bias proportion, variance Bias proportion and covariance Bias proportion) analysis and in - sample forecast accuracy for the models. From all the criteria used it was observed that the duo of LSTAR-GARCH and ESTAR-GARCH models performed far better than classical GARCH model. However, LSTAR-GARCH performs slightly better than ESTAR-GARCH. From these results it is evident that volatility in Nigerian gross domestic product (Real estate) is best captured using Logistic smooth transition GARCH (LSTAR-GARCH) models, it is therefore, recommended for would be forecasters, investors and other end users to make use of LSTAR-GARCH models.