Triethylamine (TEA), a representative volatile organic environmental pollutant, poses significant environmental pollution risks and can adversely affect the liver and nervous system, potentially leading to fatal outcomes. However, existing gas sensors for TEA detection have pressing drawbacks, such as safety hazards associated with high-temperature operation and poor timeliness due to time-consuming testing. Herein, the Ti3C2Tx/Co-BDC sensor demonstrates ultra-sensitive detection of TEA at a low temperature of 100 °C. This temperature is below the threshold for explosion-proof operation, ensuring safe application in flammable and explosive environments. Meanwhile, the introduction of the metal-like MXene with ultra-high conductivity accelerates the response and recovery process (11 s/20 s), facilitating highly efficient TEA detection within a sub-minute timeframe. The Ti-O-Co interfacial bonds between Ti3C2Tx and Co-BDC, confirmed by both XPS analysis and theoretical calculations, enhance carrier mobility across the two materials, significantly boosting gas-sensing performance. The rapid detection of TEA at low temperatures makes the Ti3C2Tx/Co-BDC sensor more suitable for practical environmental monitoring in flammable and explosive areas, further contributing to human health and production safety.
Read full abstract