An explicit multistep mixed finite element method is proposed and discussed for regularized long wave (RLW) equation. The spatial direction is approximated by the mixed Galerkin method using mixed linear space finite elements, and the time direction is discretized by the explicit multistep method. The optimal error estimates in <svg style="vertical-align:-0.0pt;width:16.1625px;" id="M1" height="15.8375" version="1.1" viewBox="0 0 16.1625 15.8375" width="16.1625" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,15.775)"><path id="x1D43F" d="M559 163q-23 -66 -68 -163h-474l6 26q62 4 79.5 19.5t28.5 75.5l78 409q7 35 8.5 49t-8 25t-24 13t-51.5 5l5 28h266l-6 -28q-65 -5 -79.5 -18t-25.5 -74l-76 -406q-10 -57 14 -75q12 -13 96 -13q93 0 126 29q41 40 76 109z" /></g> <g transform="matrix(.012,-0,0,-.012,9.763,7.613)"><path id="x32" d="M412 140l28 -9q0 -2 -35 -131h-373v23q112 112 161 170q59 70 92 127t33 115q0 63 -31 98t-86 35q-75 0 -137 -93l-22 20l57 81q55 59 135 59q69 0 118.5 -46.5t49.5 -122.5q0 -62 -29.5 -114t-102.5 -130l-141 -149h186q42 0 58.5 10.5t38.5 56.5z" /></g> </svg> and <svg style="vertical-align:-0.0pt;width:21.362499px;" id="M2" height="15.8375" version="1.1" viewBox="0 0 21.362499 15.8375" width="21.362499" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,15.775)"><path id="x1D43B" d="M865 650q-1 -4 -4 -14t-4 -14q-62 -5 -77 -19.5t-29 -82.5l-74 -394q-12 -61 -0.5 -77t75.5 -21l-6 -28h-273l8 28q64 5 82 21t29 76l36 198h-380l-37 -197q-11 -64 0.5 -78.5t79.5 -19.5l-6 -28h-268l6 28q60 6 75.5 21.5t26.5 76.5l75 394q13 66 2 81.5t-77 20.5l8 28
h263l-6 -28q-58 -5 -75.5 -21t-30.5 -81l-26 -153h377l29 153q12 67 2 81t-74 21l5 28h268z" /></g> <g transform="matrix(.012,-0,0,-.012,14.975,7.613)"><path id="x31" d="M384 0h-275v27q67 5 81.5 18.5t14.5 68.5v385q0 38 -7.5 47.5t-40.5 10.5l-48 2v24q85 15 178 52v-521q0 -55 14.5 -68.5t82.5 -18.5v-27z" /></g> </svg> norms for the scalar unknown <svg style="vertical-align:-0.1638pt;width:9.2749996px;" id="M3" height="7.9499998" version="1.1" viewBox="0 0 9.2749996 7.9499998" width="9.2749996" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,7.675)"><path id="x1D462" d="M515 96q-37 -44 -84.5 -76t-71.5 -32q-12 0 -18 7t-6 34t10 75l19 89h-2q-87 -113 -181 -176q-43 -29 -83 -29q-46 0 -46 63q0 31 9 67l52 222q7 36 -1 36q-10 0 -76 -50l-13 24q47 45 92 71.5t67 26.5q18 0 21 -16.5t-8 -65.5l-56 -242q-16 -67 13 -67q41 0 114 74
t114 146l32 145l74 26h11q-52 -199 -80 -347q-8 -39 6 -39q7 0 32 17.5t47 39.5z" /></g> </svg> and its flux <svg style="vertical-align:-3.50804pt;width:44.3125px;" id="M4" height="12.1125" version="1.1" viewBox="0 0 44.3125 12.1125" width="44.3125" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,7.675)"><path id="x1D45E" d="M474 429q-19 -69 -47 -222l-65 -347q-8 -49 0 -60t49 -16l26 -3l-4 -26l-246 -12l4 25l17 3q37 6 50 20.5t23 60.5l67 321h-2q-65 -79 -150 -138q-69 -47 -104 -47q-28 0 -48.5 32t-20.5 81q0 78 35 148t90 117q67 57 161 77q23 5 58 5q43 0 90 -15zM387 387
q-30 16 -75 16q-58 0 -92 -27q-49 -39 -78.5 -112t-29.5 -136q0 -34 8.5 -52.5t21.5 -18.5q40 0 109.5 63.5t103.5 115.5q16 53 32 151z" /></g><g transform="matrix(.017,-0,0,-.017,13.118,7.675)"><path id="x3D" d="M535 323h-483v50h483v-50zM535 138h-483v50h483v-50z" /></g><g transform="matrix(.017,-0,0,-.017,27.821,7.675)"><use xlink:href="#x1D462"/></g> <g transform="matrix(.012,-0,0,-.012,36.975,11.762)"><path id="x1D465" d="M536 404q0 -17 -13.5 -31.5t-26.5 -14.5q-8 0 -15 10q-11 14 -25 14q-22 0 -67 -50q-47 -52 -68 -82l37 -102q31 -88 55 -88t78 59l16 -23q-32 -48 -68.5 -78t-65.5 -30q-19 0 -37.5 20t-29.5 53l-41 116q-72 -106 -114.5 -147.5t-79.5 -41.5q-21 0 -34.5 14t-13.5 37
q0 16 13.5 31.5t28.5 15.5q12 0 17 -11q5 -10 25 -10q22 0 57.5 36t89.5 111l-40 108q-22 58 -36 58q-21 0 -67 -57l-19 20q81 107 125 107q17 0 30 -22t39 -88l22 -55q68 92 108.5 128.5t74.5 36.5q20 0 32.5 -14t12.5 -30z" /></g> </svg> based on time explicit multistep method are derived. Some numerical results are given to verify our theoretical analysis and illustrate the efficiency of our method.
Read full abstract