In the present work, deep eutectic solvents (DESs) were synthesized in a one-step process by heating the hydrogen bond acceptors (HBAs) tetrabutylammonium bromide and tetrabutylphosphonium bromide, along with two hydrogen bond donors (HBDs) ethanolamine and N-methyldiethanolamine, which were mixed in certain molar ratios. This mixture was then mixed with water to form a DES + water system. The densities of the prepared DES + water systems were successfully measured using the U-tube oscillation method under atmospheric pressure over a temperature range of 293.15-363.15 K. The CO2 trapping capacity of the DES + water systems was investigated using the isovolumetric saturation technique at pressures ranging from 0.1 MPa to 1 MPa and temperatures ranging from 303.15 K to 323.15 K. A semi-empirical model was employed to fit the experimental CO2 solubility data, and the deviations between the experimental and fitted values were calculated. At a temperature of 303.15 K and a pressure of 100 kPa, the CO2 solubilities in the DES + water systems of TBAB and MEA, with molar ratios of 1:8, 1:9, and 1:10, were measured to be 0.1430 g/g, 0.1479 g/g, and 0.1540 g/g, respectively. Finally, it was concluded that the DES + water systems had a superior CO2 capture capacity compared to the 30% aqueous monoethanolamine solution commonly used in industry, indicating the potential of DES + water systems for CO2 capture.
Read full abstract