Exhaustive experimental annotation of the effect of all known protein variants remains daunting and expensive, stressing the need for scalable effect predictions. We introduce VespaG, a blazingly fast missense amino acid variant effect predictor, leveraging protein language model (pLM) embeddings as input to a minimal deep learning model. To overcome the sparsity of experimental training data, we created a dataset of 39 million single amino acid variants from the human proteome applying the multiple sequence alignment-based effect predictor GEMME as a pseudo standard-of-truth. This setup increases interpretability compared to the baseline pLM and is easily retrainable with novel or updated pLMs. Assessed against the ProteinGym benchmark (217 multiplex assays of variant effect-MAVE-with 2.5 million variants), VespaG achieved a mean Spearman correlation of 0.48 ± 0.02, matching top-performing methods evaluated on the same data. VespaG has the advantage of being orders of magnitude faster, predicting all mutational landscapes of all proteins in proteomes such as Homo sapiens or Drosophila melanogaster in under 30 min on a consumer laptop (12-core CPU, 16 GB RAM). VespaG is available freely at https://github.com/jschlensok/vespag. The associated training data and predictions are available at https://doi.org/10.5281/zenodo.11085958.
Read full abstract