Abstract Empathy is characterized as the ability to share one's experience and is associated with altruism. Previous work using blood oxygen level–dependent (BOLD) functional MRI (fMRI) has found that empathy is associated with greater activation in brain mechanisms supporting mentalizing (temporoparietal junction), salience (anterior cingulate cortex; insula), and self-reference (medial prefrontal cortex; precuneus). However, BOLD fMRI has some limitations that may not reliably capture the tonic experience of empathy. To address this, the present study used a perfusion-based arterial spin labeling fMRI approach that provides direct a quantifiable measurement of cerebral blood flow (1 mL/100 g tissue/min) and is less susceptible to low-frequency fluctuations and empathy-based “carry-over” effects that may be introduced by BOLD fMRI–based block designs. Twenty-nine healthy females (mean age = 29 years) were administered noxious heat (48°C; left forearm) during arterial spin labeling fMRI. In the next 2 fMRI scans, female volunteers viewed a stranger (laboratory technician) and their romantic partner, respectively, receive pain-evoking heat (48°C; left forearm) in real-time and positioned proximal to the scanner during fMRI acquisition. Visual analog scale (0 = “not unpleasant”; 10 = “most unpleasant sensation imaginable”) empathy ratings were collected after each condition. There was significantly (P = 0.01) higher empathy while viewing a romantic partner in pain and greater cerebral blood flow in the right temporoparietal junction, amygdala, anterior insula, orbitofrontal cortex, and precuneus when compared with the stranger. Higher empathy was associated with greater precuneus and primary visual cortical activation. The present findings indicate that brain mechanisms supporting the embodiment of another's experience is associated with higher empathy.
Read full abstract