This study compares thermodynamics, economics, and environmental performance of cascaded ORCs operated under a single and dual fluids. In the single fluid cascaded ORC, toluene, benzene, acetone and cyclopentane are run in high and low temperature cycles, whereas in dual fluid cascaded ORC, toluene, benzene, acetone and cyclopentane are run in high temperature cycle and R601a in the low temperature cycle. The analysis compares variations in expander inlet temperature and condensation temperature. Thermodynamic performance involved net power output (Pnet) and thermal efficiency (ηth), while economic indicators included net present value (NPV) and levelized cost of electricity (LCOE). In environmental performance, the annual reduction in carbon dioxide emission (CO2-eq) is assessed. The findings revealed that dual fluid cascaded ORC generated the highest Pnet of 1245.11 kW while single fluid cascaded ORC reached 1170.27 kW. The dual fluid cascaded ORC showed the significant increase in Pnet (%DPnet) for about 43% at the lowest expander inlet temperature (500 K). In terms of ηth, dual fluid cascaded ORC attained 37.23 % while single fluid cascaded ORC reached 33.25%. It is further found that acetone+R601a performed well in dual fluid cascaded ORC, resulting in the highest Pnet and allowing system’s NPV to turn positive sooner than other fluids. Furthermore, cyclopentane+R601a had the lowest LCOE of 0.0158 US$/kWh, which is 1.1% lower compared to the single fluid cascaded ORC and competitive in the Thai electricity market. In environmental saving, dual fluid cascaded ORC reduced about 144.96 tCO2-eq/year, and outperformed single fluid cascaded ORC by roughly 6.39%.
Read full abstract