Network interface cards are one of the key components to achieve efficient parallel performance. In the past, they have gained new functionalities, such as lossless transmission and remote direct memory access, that are now ubiquitous in high-performance systems. Prototypes of next-generation network cards now offer new features that facilitate device programming. In this article, the authors discuss an abstract machine model for offloading architectures. They used the Portals 4 network interface to implement the proposed abstraction model, and they present two microbenchmarks to show the effects of fully offloaded collective communications. They then propose the concept of persistent offloaded operations that can reduce the creation/offloading overhead, and they discuss a possible extension to the current Portals 4 interface to enable their support. The results obtained show how this work can be used to accelerate existing MPI applications.