The promotion of deep decarbonization in the cement industry is crucial for mitigating global climate change, a key component of which is carbon capture, utilization, and storage (CCUS) technology. Despite its importance, there is a lack of empirical assessments of early opportunities for CCUS implementation in the cement sector. In this study, a comprehensive onshore and offshore source–sink matching optimization assessment framework for CCUS retrofitting in the cement industry, called the SSM-Cement framework, is proposed. The framework comprises four main modules: the cement plant suitability screening module, the storage site assessment module, the source–sink matching optimization model module, and the economic assessment module. By applying this framework to China, 919 candidates are initially screened from 1132 existing cement plants. Further, 603 CCUS-ready cement plants are identified, and are found to achieve a cumulative emission reduction of 18.5 Gt CO2 from 2030 to 2060 by meeting the CCUS feasibility conditions for constructing both onshore and offshore CO2 transportation routes. The levelized cost of cement (LCOC) is found to range from 30 to 96 (mean 73) USD·(t cement)−1, while the levelized carbon avoidance cost (LCAC) ranges from −5 to 140 (mean 88) USD·(t CO2)−1. The northeastern and northwestern regions of China are considered priority areas for CCUS implementation, with the LCAC concentrated in the range of 35 to 70 USD·(t CO2)−1. In addition to onshore storage of 15.8 Gt CO2 from 2030 to 2060, offshore storage would contribute 2.7 Gt of decarbonization for coastal cement plants, with comparable LCACs around 90 USD·(t CO2)−1.