Herein, a novel N, S co-doped porous carbon (S5C5-AC) for Cr(VI) removal was prepared by co-hydrothermal carbonization (HTC) of sewage sludge (SS) and low-rank coal (LC) combining with KOH modification. The results showed that S5C5-AC had excellent adsorption performance on Cr(VI), and lower pH value, higher initial concentration and longer contact time were beneficial for Cr(VI) adsorption. The adsorption kinetics and isotherms revealed that Cr(VI) adsorption by S5C5-AC was homogeneous and dominated by chemisorption. The adsorption isotherm showed that the maximum equilibrium adsorption capacity of S5C5-AC for Cr(VI) was 382.04 mg/g at 25 °C. Furthermore, the results showed that the main mechanisms for Cr(VI) removal were the pore filling, electrostatic interaction and reduction. Moreover, the electron transfer mechanism during the adsorption and reduction process was further explored at the molecular and electronic levels by density functional theory (DFT) and front orbital theory (FOT) simulations. The analysis of DFT and FOT indicated that the synergistic effect between S and N functional groups was exhibited during the Cr(VI) removal process. Considering the existence of synergistic effects between N and S functional groups during adsorption, the S and N content and form were modified collaboratively. Increasing the relative content of pyrrolic N may be the most effective pathway for improving removal performance. Besides that, S5C5-AC exhibited excellent adsorption capacity over a high coexisting ion concentration range and various actual water bodies and regeneration performance, which indicated that S5C5-AC had promising potential for the remediation of wastewater in industrial applications.