We consider the problem of existence of conformal metrics with prescribed Q-curvature on standard sphere <svg style="vertical-align:-1.59705pt;width:57.700001px;" id="M1" height="15.6" version="1.1" viewBox="0 0 57.700001 15.6" width="57.700001" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,13.55)"><path id="x1D446" d="M457 488l-30 -3q-17 148 -131 148q-53 0 -84.5 -34.5t-31.5 -82.5q0 -42 25.5 -72t74.5 -62l33 -22q63 -42 95 -85t32 -102q0 -84 -67 -137t-163 -53q-58 0 -113 22t-70 43l-4 152l27 4q4 -32 15 -62.5t31 -59.5t53.5 -47t76.5 -18q56 0 92 35t36 96q0 39 -25 70t-78 68
l-31 22q-32 23 -53.5 41.5t-45 57t-23.5 77.5q0 82 58 132.5t156 50.5q46 0 101 -17l18.5 -6t17 -6t8.5 -3q-4 -55 0 -147z" /></g> <g transform="matrix(.012,-0,0,-.012,8.225,5.388)"><path id="x1D45B" d="M495 86q-46 -47 -87 -72.5t-63 -25.5q-43 0 -16 107l49 210q7 34 8 50.5t-3 21t-13 4.5q-35 0 -109.5 -72.5t-115.5 -140.5q-21 -75 -38 -159q-50 -10 -76 -21l-6 8l84 340q8 35 -4 35q-17 0 -67 -46l-15 26q44 44 85.5 70.5t64.5 26.5q35 0 10 -103l-24 -98h2
q42 56 97 103.5t96 71.5q46 26 74 26q9 0 16 -2.5t14 -11.5t9.5 -24.5t-1 -44t-13.5 -68.5q-30 -117 -47 -200q-4 -19 -3.5 -25t6.5 -6q21 0 70 48z" /></g> <g transform="matrix(.017,-0,0,-.017,14.813,13.55)"><path id="x2C" d="M95 130q31 0 61 -30t30 -78q0 -53 -38 -87.5t-93 -51.5l-11 29q77 31 77 85q0 26 -17.5 43t-44.5 24q-4 0 -8.5 6.5t-4.5 17.5q0 18 15 30t34 12z" /></g><g transform="matrix(.017,-0,0,-.017,21.51,13.55)"><use xlink:href="#x1D45B"/></g><g transform="matrix(.017,-0,0,-.017,34.769,13.55)"><path id="x2265" d="M531 285l-474 -214v56l416 183l-416 184v56l474 -215v-50zM531 -40h-474v50h474v-50z" /></g><g transform="matrix(.017,-0,0,-.017,49.473,13.55)"><path id="x35" d="M153 550l-26 -186q79 31 111 31q90 0 141.5 -51t51.5 -119q0 -93 -89 -166q-85 -69 -173 -71q-32 0 -61.5 11.5t-41.5 23.5q-18 17 -17 34q2 16 22 33q14 9 26 -1q61 -50 124 -50q60 0 93 43.5t33 104.5q0 69 -41.5 110t-121.5 41q-53 0 -102 -20l38 305h286l6 -8
l-26 -65h-233z" /></g> </svg>. Under the assumption that the order of flatness at critical points of prescribed Q-curvature function <svg style="vertical-align:-2.3205pt;width:34.575001px;" id="M2" height="15.0875" version="1.1" viewBox="0 0 34.575001 15.0875" width="34.575001" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,12.138)"><path id="x1D43E" d="M764 650l-7 -26q-61 -10 -91.5 -22.5t-76.5 -48.5l-235 -184q104 -152 208 -276q31 -37 54.5 -48.5t68.5 -16.5l-7 -28h-156q-138 170 -213 284q-19 29 -33.5 35t-33.5 -7l-29 -173q-15 -75 -5.5 -90.5t74.5 -20.5l-5 -28h-260l7 28q58 5 74 21.5t30 89.5l70 378
q12 68 2 83t-72 22l6 28h257l-7 -28q-62 -7 -76 -21.5t-27 -83.5l-32 -172q29 11 78 46q112 84 217 179q18 16 23.5 25.5t-1 14.5t-26.5 8l-30 4l5 28h249z" /></g><g transform="matrix(.017,-0,0,-.017,13.254,12.138)"><path id="x28" d="M300 -147l-18 -23q-106 71 -159 185.5t-53 254.5v1q0 139 53 252.5t159 186.5l18 -24q-74 -62 -115.5 -173.5t-41.5 -242.5q0 -130 41.5 -242.5t115.5 -174.5z" /></g><g transform="matrix(.017,-0,0,-.017,19.135,12.138)"><path id="x1D465" d="M536 404q0 -17 -13.5 -31.5t-26.5 -14.5q-8 0 -15 10q-11 14 -25 14q-22 0 -67 -50q-47 -52 -68 -82l37 -102q31 -88 55 -88t78 59l16 -23q-32 -48 -68.5 -78t-65.5 -30q-19 0 -37.5 20t-29.5 53l-41 116q-72 -106 -114.5 -147.5t-79.5 -41.5q-21 0 -34.5 14t-13.5 37
q0 16 13.5 31.5t28.5 15.5q12 0 17 -11q5 -10 25 -10q22 0 57.5 36t89.5 111l-40 108q-22 58 -36 58q-21 0 -67 -57l-19 20q81 107 125 107q17 0 30 -22t39 -88l22 -55q68 92 108.5 128.5t74.5 36.5q20 0 32.5 -14t12.5 -30z" /></g><g transform="matrix(.017,-0,0,-.017,28.637,12.138)"><path id="x29" d="M275 270q0 -296 -211 -440l-19 23q75 62 116.5 174t41.5 243t-42 243t-116 173l19 24q211 -144 211 -440z" /></g> </svg> is <svg style="vertical-align:-3.56265pt;width:94.912498px;" id="M3" height="16.6625" version="1.1" viewBox="0 0 94.912498 16.6625" width="94.912498" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,12.162)"><path id="x1D6FD" d="M558 587q0 -32 -14 -61t-40 -53.5t-48.5 -41t-54.5 -36.5q144 -51 144 -174q0 -55 -43.5 -108t-104.5 -87q-77 -42 -131 -42q-31 0 -54 20t-31 47l11 18q48 -29 108 -29q79 0 119.5 43t40.5 109t-44.5 107.5t-119.5 50.5l22 47q34 1 65 21q96 61 96 157q0 42 -24 67.5
t-62 25.5q-24 0 -43.5 -9t-35 -29.5t-27 -44t-22.5 -63t-19.5 -75.5t-18.5 -91q-57 -294 -68 -380q-26 -190 -35 -200q-26 -31 -97 -37l-4 26q19 9 48 170l77 413q23 121 52.5 187.5t83.5 114.5q70 62 148 62q51 0 88.5 -34t37.5 -91z" /></g><g transform="matrix(.017,-0,0,-.017,17.486,12.162)"><path id="x2208" d="M448 1h-83q-118 0 -201.5 74.5t-83.5 179.5t83.5 179.5t201.5 74.5h83v-50h-84q-87 0 -150.5 -51.5t-73.5 -127.5h308v-50h-308q10 -76 73.5 -127.5t150.5 -51.5h84v-50z" /></g><g transform="matrix(.017,-0,0,-.017,34.009,12.162)"><path id="x5D" d="M226 -163h-170v27q79 7 94 20t15 73v627q0 59 -15 72t-94 20v27h170v-866z" /></g><g transform="matrix(.017,-0,0,-.017,39.874,12.162)"><path id="x31" d="M384 0h-275v27q67 5 81.5 18.5t14.5 68.5v385q0 38 -7.5 47.5t-40.5 10.5l-48 2v24q85 15 178 52v-521q0 -55 14.5 -68.5t82.5 -18.5v-27z" /></g><g transform="matrix(.017,-0,0,-.017,48.033,12.162)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,54.747,12.162)"><use xlink:href="#x1D45B"/></g><g transform="matrix(.017,-0,0,-.017,67.055,12.162)"><path id="x2212" d="M535 230h-483v50h483v-50z" /></g><g transform="matrix(.017,-0,0,-.017,80.807,12.162)"><path id="x34" d="M456 178h-96v-72q0 -51 12.5 -62.5t72.5 -16.5v-27h-256v27q65 5 78 17t13 62v72h-260v28q182 271 300 426h40v-407h96v-47zM280 225v295h-2q-107 -148 -196 -295h198z" /></g><g transform="matrix(.017,-0,0,-.017,88.966,12.162)"><use xlink:href="#x5D"/></g> </svg>, we give precise estimates on the losses of the compactness, and we prove new existence and multiplicity results through an Euler-Hopf type formula.