Lactate electrochemical biosensors were fabricated using Pediococcus sp lactate oxidase (E.C. 1.1.3.2), an external polyurethane membrane laminate diffusion barrier and an internal ionomeric polymer barrier (sulphonated polyether ether sulphone polyether sulphone, SPEES PES). In a needle embodiment, a Pt wire working electrode was retained within stainless steel tubing serving as pseudoreference. The construct gave linearity to at least 25 mM lactate with 0.17 nA/mM lactate sensitivity. A low permeability inner membrane was also unexpectedly able to increase linearity. Responses were oxygen dependent at pO2 < 70 mmHg, irrespective of the inclusion of an external diffusion barrier membrane. Subcutaneous tissue was monitored in Sprague Dawley rats, and saliva and sweat during exercise in human subjects. The tissue sensors registered no response to intravenous Na lactate, indicating a blood-tissue lactate barrier. Salivary lactate allowed tracking of blood lactate during exercise, but lactate levels were substantially lower than those in blood (0–3.5 mM vs. 1.6–12.1 mM), with variable degrees of lactate partitioning from blood, evident both between subjects and at different exercise time points. Sweat lactate during exercise measured up to 23 mM but showed highly inconsistent change as exercise progressed. We conclude that neither tissue interstitial fluid nor sweat are usable as surrogates for blood lactate, and that major reappraisal of lactate sensor use is indicated for any extravascular monitoring strategy for lactate.
Read full abstract