In this work, we employ pulse voltage to drive an atmospheric pressure plasma jet (APPJ) in Helium, and consider mainly the evolution of discharge inside tube. Specifically, the effects of rising edge on the discharge evolution are studied through the simulation and experiment. The spatiotemporal evolution of electron density, ionization source, electron temperature and excited helium atom are evaluated. Besides, the mechanism affecting the rise time is analyzed by the parameters such as discharge current, sheath thickness and surface charge density distribution. In the considered cases, the ionization wave propagates to the ground electrode and downstream of the active electrode in the dielectric tube. The plasma with faster rising edge has larger electron temperature, discharge current, electron density and electric field strength. With the change of voltage rising edge, there occur two discharge modes: hollow mode and solid mode in dielectric barrier discharge (DBD) area. When the rising edge is of nanosecond and sub microsecond, it develops into hollow mode, and changes into solid mode after the rising edge has continued to increase. Both discharge modes are essentially affected by the sheath thickness, the electric field distribution, and the surface charge density inside the tube. When the sheath thickness is less than 1.8 mm, the plasma usually propagates in hollow mode, and when the sheath thickness is equal to 1.8 mm, the radial propagation range of the plasma is limited and changes into solid propagation. In the DBD region, when the electric field is mainly axial component, the plasma propagates in the mode at the beginning of discharge; inside the ground electrode, owing to the fact that the applied electric field is deviated from the radial direction, and that the positive charge deposited on the tube wall forms a radial self-built electric field, the strong radial electric field formed by the superposition of the two fields causes the discharge to propagate in hollow mode.
Read full abstract