BackgroundMost particulate organic matter (POM) cannot be directly degraded in the conventional wastewater treatment, which should be transformed into dissolved organic matter (DOM) through a hydrolysis process. However, non-hydrolyzed POM in the biological treatment can limit treated efficiencies for the wastewater treatment plants (WWTPs) facilities. Hence an operational tool is indispensable for insight into removals of DOM and POM factions in the WWTP. In this study, excitation-emission matrix fluorescence spectroscopy (EEM) combined parallel factor analysis (PARAFAC), two-dimensional correlation (2D-COS) and structural equation modeling (SEM) was employed to evaluate removals of DOM and POM in a wastewater treatment plant.ResultsFour fluorescence components were identified in DOM and POM substances from the WWTP by EEM combined with PARAFAC, i.e., tyrosine-like (TYLF), tryptophan-like (TRLF), microbial byproduct-like (MBLF), and fulvic acid-like (FALF). In A2/O process, the TYLF and TRLF of DOM were removed to a larger extent than those of MBLF and FALF in anaerobic tank, while TYLF and MBLF of POM were removed to a great extent than those of TRLF and FALF in primary sedimentation and aerobic tanks. By the 2D-COS, a decreasing variation order of DOM fractions in the wastewater treatment process was UV-FALF → MBLF2 → Vis-FALF → TRLF → TYLF, while the decreasing order of POM fractions was Vis-FALF → UV-FALF → MBLF2 → TYLF → MBLF1 → TRLF. SEM revealed that TRLF and TYLF of DOM were degraded by anaerobic microorganism, and TRLF could be transformed partially into FALF. However, TRFL and TYLF of POM were discomposed by aerobic microorganism.ConclusionsThe 2D-COS and SEM can be practicable tools as EEM-PARAFAC for monitoring DOM and POM in the WWTP. The study could present a theoretical support to improving the retrofit of WWTP and formulating emission standards for organic pollutants.
Read full abstract