Laser-activated selective electroless plating (LASELP) is a promising complementary manufacturing process employed in hybrid additive manufacturing (HAM) technology for the fabrication of customized 3D electronics. However, to the best knowledge of the authors, most current LASELP technologies could only enable copper deposition on/within the polymer matrix, which largely limited the application scope of this technology. Accordingly, an advanced LASELP technology combining catalyst exchanging process is proposed to pattern diverse functional metal on the photopolymer to fabricate 3D electronics. Two kinds of catalyst systems are selected in this HAM technology: (1) Cu2(OH)PO4; (2) antimony tin oxide (ATO) and titania (TiO2). Silver and nickel-phosphorus (Ni-P) alloy were selected as the representatives of direct- and indirect-ELP metals. Silver could directly plated on the laser-activated surface to deposit a dense and highly conductive layer, while for the Ni-P layer, an inevitable catalyst exchange step was applied here to induce Pd0 plating seeds on the laser-activated substrate. Finally, a variety of customized electronics, such as conformal circuit boards, smart structure with strain sensor, embedded structural thermometer, Internet of Things bottle cap, and gas tube integrated with 3D conformal NO2 sensor were implemented are fabricated and fully verify this HAM technology.
Read full abstract