Copper (Cu) is an essential and important trace element for some significant life processes for most organisms. However, an excessive amount of Cu can be highly toxic. The present study was conducted to elucidate the oxidative stress-induced alteration in transcriptional level of autophagy-related genes in the liver and kidney tissue of fish Channa punctatus after treatment with three different sublethal concentrations of CuSO4for 28days. All the studied enzymatic and non-enzymatic oxidative stress markers viz. superoxide dismutase-SOD, catalase-CAT, glutathione peroxidase-GPx, glutathione reductase-GR, and glutathione-GSH showed an increase in their activity levels in the treated groups in a dose-dependent manner. Particularly SOD and CAT have shown a significant hike in activity levels. ROS levels in blood cells increased significantly (p < 0.05) in all the treated groups, i.e., Group II-1/20th of 96h-LC50 (0.2mg/L), Group III-1/10th of 96h-LC50 (0.4mg/L), and Group IV-1/5h of 96h-LC50 (0.8mg/L) of Cu2+ in a dose-dependent manner as compared to control (Group I). The upregulation in mRNA levels of autophagy-related genes Microtubule-associated protein 1 light chain 3 (LC3), Gamma-aminobutyric acid receptor-associated protein precursor (Gabarap), and Golgi-associated ATPase enhancer of 16kDa (GATE16), autophagy-related 5 (ATG5) was observed while mammalian target of rapamycin (mTOR) showed downregulation in the liver and kidney tissue of fish. The decrease in mTOR and increase in ATG5 gene expression projects autophagic vesicle formation due to oxidative stress. There was significant induction in micronuclei (MN) frequency in all the treated groups. The highest frequency of MN induced by Cu2+ was recorded in Group IV after 28days of the exposure period. Thus, it can be concluded that the available information about Cu2+-induced oxidative stress-mediated autophagy in the liver and kidney of fish C. punctatus remains largely unclear to date, so to fill the aforesaid gap, the present study was undertaken, which gives an insight for the mechanisms of autophagy induced by Cu2+ in fish.
Read full abstract