Abstract In this paper, we continue to investigate the exceptional sets for sums of five and six almost equal cubes of primes. We would also like to establish that almost all natural numbers n, subjected to certain congruence conditions, can be written as n = p 1 3 + ⋯ + p s 3 {n=p_{1}^{3}+\cdots+p_{s}^{3}} ( s = 5 , 6 {s=5,6} ) with | p j - ( n / s ) 1 / 3 | ≤ n θ s / 3 + ε {|p_{j}-(n/s)^{1/3}|\leq n^{\theta_{s}/3+\varepsilon}} ( 1 ≤ j ≤ s {1\leq j\leq s} ), where θ s {\theta_{s}} is as small as possible. The main result of this paper is to improve θ 6 = 5 / 6 + ε {\theta_{6}=5/6+\varepsilon} , which is proven in [M. Wang, Exceptional sets for sums of five and six almost equal prime cubes, Acta Math. Hungar. 156 2018, 2, 424–434], to θ 6 = 9 / 11 + ε {\theta_{6}=9/11+\varepsilon} , as well as prove θ 5 = 8 / 9 + ε {\theta_{5}=8/9+\varepsilon} in another way.